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ABSTRACT

Let S0,n be an n-punctured sphere. For n ≥ 4, we construct a sequence (Xi)i∈N of
finite rigid sets in the pants graph P(S0,n) such that X1 ⊂ X2 ⊂ · · · ⊂ P(S0,n) andS

i≥1 Xi = P(S0,n).
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1. Introduction

Let S = Sg,n be an orientable surface of genus g with n punctures and let
Mod±(S) = π0(Homeo(S)) be the extended mapping class group. Ivanov [6], Kork-
maz [7], and Luo [8] proved that, for most surfaces, the curve complexes C(S) are
rigid, that is, Aut(C(S)) ∼= Mod±(S). In [2], Aramayona and Leininger proved that
curve complexes contain finite rigid sets; meaning a finite subgraph such that every
simplicial embedding is a restriction of an element of Mod±(S). Later in [3], they
showed that there exists an exhaustion of the curve complexes by finite rigid sets.

For the pants graphs P(S), the rigidity property was proved by Margalit [9] using
the result of Ivanov, Korkmaz, and Lou. Aramayona [1] extended Margalit’s result
to prove a stronger form of rigidity, that is, if S and S′ are surfaces such that the
complexity of S is at least 2, then every injective simplicial map φ : P(S) → P(S′)
is induced by a π1-injective embedding f : S → S′. In [10], we refined Aramay-
ona’s result by showing that the pants graphs of punctured spheres are finitely
rigid.

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
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In this paper, we modify the tools Aramayona and Leininger built in [3], together
with the finite rigid sets we constructed [10], to prove that we can exhaust the pants
graphs of punctured spheres by finite rigid sets.

Theorem 1.1. Let S0,n be an n-punctured sphere. For n ≥ 4, there exists a
sequence of finite rigid sets X1 ⊂ X2 ⊂ · · · ⊂ P(S0,n) such that

⋃
i≥1 Xi = P(S0,n).

Theorem 1.1 gives us an alternative proof of [9, Theorem 1] for the case of
punctured spheres without using the rigidity of curve complexes, as the following
corollary states.

Corollary 1.1. Let S0,n be an n-punctured sphere. For n ≥ 4, the natural map
θ : Mod±(S) → Aut(P(S0,n)) is a surjective homomorphism. If n = 4, ker(θ) ∼=
Z2 ⊕ Z2. If n ≥ 5, θ is an isomorphism.

Outline of the paper. Section 2 contains the relevant background and definitions.
In Sec. 3, we describe the adjustments to the tools Aramayona and Leininger [3]
developed to enlarge their rigid sets in the curve complex so we can use them in
our setting. We use these tools to prove the main theorem in Sec. 4.

2. Background and Definitions

This section contains necessary definitions and background restricted to punctured
spheres, for general settings see [1, 9]. Let S = S0,n be an n-punctured sphere. A
simple closed curve on S is essential if it does not bound a disk or a once-punctured
disk on S. Throughout this paper, a curve is a homotopy class of essential simple
closed curves on S. Given two curves γ and γ′, we denote their geometric inter-
section number by i(γ, γ′), which is the minimum number of transverse intersec-
tion points among the representatives of γ and γ′. The two curves are disjoint if
i(γ, γ′) = 0.

A multicurve Q is a set of pairwise distinct, disjoint curves on S. For a given
multicurve Q, the nontrivial piece (S − Q)0 of the complement of the curves in
Q is the union of the non-thrice-punctured sphere components of the complement.
We call a thrice-punctured sphere, a pair of pants.

A pants decomposition P is a maximal multicurve: the complement in S is
a disjoint union of pairs of pants. A pants decomposition always contains n − 3
curves and we call this number the complexity κ(S) of S. The deficiency of
a multicurve Q is the number κ(S) − |Q|. If Q is a deficiency-1 multicurve then
(S − Q)0 is homeomorphic to S0,4.

Let P and P ′ be pants decompositions of S. We say that P and P ′ differ by an
elementary move if there are curves α, α′ on S and a deficiency-1 multicurve Q

such that P = {α} ∪ Q, P ′ = {α′} ∪ Q and i(α, α′) = 2; see Fig. 1 for an example
of elementary moves.
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Fig. 1. Example of an elementary move.

The pants graph P(S) of S is a graph with the set of vertices corresponding
to pants decompositions. Two vertices are connected by an edge if the correspond-
ing pants decompositions differ by an elementary move. The pants graph P(S) is
connected and the pants graph P(S0,4) of a 4-punctured sphere is isomorphic to a
Farey graph, see [5].

A path in P(S) is an edge path determined by a sequence of distinct adjacent
vertices of P(S). A cycle in P(S) is a subgraph homeomorphic to a circle. We call a
cycle, a triangle, rectangle, or pentagon if it has 3, 4, or 5 vertices, respectively.
Each edge of P(S) is contained in a unique Farey graph in P(S), see [9, Lemma 2].
A cycle is called an alternating cycle if any two consecutive edges are in different
Farey graphs.

Let X ⊂ P(S0,n) and φ : X → P(S0,m) be an injective simplicial map. We say
that a π1-injective embedding f : S0,n → S0,m induces φ if there is a deficiency-
(n − 3) multicurve Q on S0,m such that f(S0,n) = (S0,m − Q)0 and the simplicial
map

fQ : P(S0,n) → P(S0,m),

defined by fQ(u) = f(u) ∪ Q satisfies fQ(u) = φ(u) for any vertex u ∈ X .

Definition 2.1. For n ≥ 4, we say that X ⊂ P(S0,n) is rigid if for any punctured
sphere S0,m and any injective simplicial map

φ : X → P(S0,m),

there exists a π1-injective embedding f : S0,n → S0,m that induces φ, unique up to
the pointwise stabilizer of X in Mod±(S0,n).

The following theorem is a refinement of Aramayona’s result [1] that we proved
in [10].

Theorem 2.1. For n ≥ 4, there exists a finite rigid subgraph Xn ⊂ P(S0,n).
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3. Tools for Enlarging Rigid Sets

This section contains the definitions and theorems Aramayona and Leininger [3]
developed to enlarge their rigid sets in curve complexes. We make some necessary
adjustments to them in order to enlarge rigid sets in pants graphs.

Definition 3.1. Let n ≥ 5. A set X ⊂ P(S0,n) is said to be weakly rigid if
whenever f1, f2 : S0,n → S0,m are π1-injective embeddings satisfy

fQ1
1 |X = fQ2

2 |X ,

for some deficiency-(n − 3) multicurves Q1 and Q2 on S0,m, then

Q1 = Q2 and f1 = f2,

up to isotopy.

It is easy to see from the definition that a superset of a weakly rigid set is also
weakly rigid.

Lemma 3.1. For n ≥ 5, let X1,X2 ⊂ P(S0,n) be rigid sets. If X1 ∩ X2 is weakly
rigid then X1 ∪ X2 is rigid.

Proof. Let φ : X1 ∪ X2 → P(S0,m) be an injective simplicial map. Since Xi is
rigid, there exist a π1-injective embedding fi : S0,n → S0,m and a deficiency-(n−3)
multicurve Qi such that fQi

i |Xi = φ|Xi . Hence fQ1
1 |X1∩X2 = φ|X1∩X2 = fQ2

2 |X1∩X2 .
The weak rigidity of X1∩X2 implies that Q1 = Q2 = Q and f1 = f2 = f . Therefore,
f is a π1-injective embedding such that fQ|X1∪X2 = φ which implies the rigidity of
X1 ∪ X2.

Let T
1
2

α ∈ Mod(S0,n) be a half-twist around a curve α on S0,n. In this paper,
we will not distinguish between homeomorphisms and their homotopy classes. The
following proposition is the key to enlarge rigid sets.

Proposition 3.2. For n ≥ 5, let X ⊂ P(S0,n) be a finite rigid set such that
Mod(S0,n) · X = P(S0,n). Suppose there exists a finite subset C of curves on S0,n

such that:

(1) The set {T±1
2

α |α ∈ C} generates Mod(S0,n);
(2) X ∩ T i

α(X ) is weakly rigid, for all α ∈ C, and i ∈ {− 1
2 , 1

2}.

Then there exists a sequence X = X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · · such that each Xi

is a finite rigid set, and
⋃

i∈N

Xi = P(S0,n).
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Proof. Since X is rigid and a half-twist is a homeomorphism, T i
α(X ) is rigid for all

α ∈ C, and i ∈ {− 1
2 , 1

2}. Given α, β ∈ C and i, j ∈ {− 1
2 , 1

2}. By assumption (2) and
by applying Lemma 3.1, we see that X ∪ T i

α(X ) is rigid. Recall that a superset of
a weakly rigid set is also weakly rigid. Hence (X ∪ T i

α(X ))∩ T j
β(X ), which contains

X ∩ T j
β(X ), is weakly rigid. Applying Lemma 3.1, we see that X ∪ T i

α(X ) ∪ T j
β(X )

is weakly rigid. By repeating above arguments, the set X2 := X ∪⋃
α∈C T

± 1
2

α (X ) is
rigid. We define

Xn+1 := Xn ∪
⋃

α∈C

T
±1

2
α (Xn),

for n ≥ 2. Since the weakly rigid set X ∩ T i
α(X ) is a subset of Xn ∩ T i

α(Xn),
Xn ∩ T i

α(Xn) is weakly rigid. Again, by applying Lemma 3.1 inductively and use
induction, we conclude that Xn is rigid for all n. Then the first claim is proved.

Finally, since {T± 1
2

α |α ∈ C} generates Mod(S0,n) and Mod(S0,n) · X = P(S0,n),
⋃

i∈N

Xi = P(S0,n).

4. The Proof of the Main Theorem

We note that for n ≤ 3, the pants graphs P(S0,3) is empty. We give a separate
proof for n = 4, which can also be found in [3, Sec. 4.1], as follows.

Proof of Theorem 1.1 for S = S0,4. The pants graph of S0,4 is isomorphic to
the Farey graph. Any triangle in S0,4 is rigid as proved in [10]. Then we let X1 to
be a triangle. Each edge in a pants graph of any punctured sphere is contained in
exactly two triangles which are both in the same Farey graph. Then we can define
Xn+1 inductively; let Xn+1 be an enlargement of Xn obtained by attaching one
more triangle to each edge of Xn contained in only one triangle. Hence Xn+1 is
rigid for all n ≥ 1, and by the construction,

⋃
i∈N

(Xi) = P(S0,4). We conclude that
sequence (Xn)n∈N is an exhaustion of P(S0,4).

For n ≥ 5, we begin by recalling the construction of finite rigid sets Xn in [10].
First, we construct S0,n with a set of curves, then define X5, and finally, define Xn

for n ≥ 6.
Consider a regular n-gon with the n vertices removed and label the sides as

1, 2, . . . , n, cyclically. For each non-adjacent pair of sides of the n-gon, draw a
straight line segment to connect the two sides. Then double the n-gon to obtain
S0,n and a set of curves Γn, see Fig. 2 for the case of S0,8 and Fig. 3 for the case of
S0,5. Let ai,j ∈ Γn be the curve connecting the ith side to the jth side of Sn. We
call ai,j such that i − j ≡ ±2 mod n, a chain curve. Compare to [2, Sec. 3].

Let Zn be a subgraph of P(S0,n) induced by the set of vertices corresponding
to pants decompositions consisting of curves from Γn.
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Fig. 2. S0,8 and the set of simple closed curves Γ8.

α

β

γ

δ

A = {α, β}

E = {α, γ} B = {δ, β}

C = { }D = { }

T
1/2
β (C)

T
1/2
β (D)

T
1/2
β (E)

Fig. 3. (Top left) S0,5 and curves in Γ5, (top right) Z5 ∪T
1
2

β (Z5), (bottom left) Z5 together with

the 10 triangles, and (bottom right) X5 ∩ T
1
2

α (X5).

For P(S0,5), we defined

X5 = Z5 ∪
⋃

c∈Γ5

T
± 1

2
c (Z5),

where T
1
2

c is a simplicial map on P(S0,5) induced by the half-twist around the
curve c.
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See Fig. 3 for a partial figure of X5. The subgraph X5 consists of the alternating
pentagon Z5 and 10 of its images under the twists. Those 10 images form 10 triangles
attached to Z5. In [10], we proved that X5 is rigid.

For n ≥ 6, we construct Xn as follows. Let W ⊂ Γn be a deficiency-2 multicurve
such that (S0,n−W )0 ∼= S0,5. Let ΓW

5 = {α ∈ Γn|α is disjoint from all curves in W}.
There is a natural homeomorphism h : S0,5 → (S0,n − W )0 such that h(Γ5) = ΓW

5 ,
see [10, Lemma 3.1]. Let

XW
5 = hW (X5) = {h(u) ∪ W | u ∈ X5},

where hW : P (S0,5) → P (S0,n) is the induced map of h defined by hW (u) =
h(u) ∪ W . Then XW

5
∼= X5. Finally, we let

Xn = Zn ∪
⋃

W

XW
5 ,

where the union is taken over all deficiency-2 multicurves in Γn with a 5-punctured
sphere component. In [10], we proved that Xn is rigid.

In the light of Proposition 3.2, we need the following lemmas to prove the main
theorem for n ≥ 5.

Lemma 4.1. Mod(S0,n) · Xn = P(S0,n)

Proof. In the first part of this proof, we will show that, for a given vertex P in
P(S0,n), there exists a vertex P ′ in Xn and f ∈ Mod(S0,n) such that f(P ′) = P .
To do this, we obtain a pants decomposition P ′ from a dual graph of the pants
decomposition P . For the second part, we will show that there is a homeomorphism
that sends a given edge in P(S0,n) to an edge in Zn ⊂ Xn.

Let P be a vertex of P(S0,n). Recall that we consider S0,n as a double of a regular
n-gon. Consider P as a pants decomposition on S0,n. The following construction of
a dual graph of P was given in [5]. For each pair of pants component of (S0,n −P ),
we mark a vertex on the interior of the component. We also mark the n punctures
as n vertices. Two vertices are connected by an edge if (1) they are vertices on
the interior of two pants components which have a common boundary, or (2) one
of the vertices is on the interior of a pair of pants component and another vertex
is a puncture of the same component. The result is a tree with 2n − 2 vertices;
all puncture-vertices have degree 1, while the rest of the vertices has degree 3, see
Fig. 4.

Since a tree is planar, we can redraw this tree on the plane inside a regular n-gon
so that all n puncture-vertices are the n vertices of the n-gon. We reconstruct a
pants decomposition consisting of curves in Γn by drawing a curve connecting two
sides of the regular n-gon whenever this curve can cross exactly one edge of the
tree and both endpoints of this edge are not puncture-vertices. Double the regular
n-gon. We now have a pants decomposition P ′ consisting of curves in Γn, i.e. P ′ is
a vertex in Zn ⊂ Xn.
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Fig. 4. Example of a pants decomposition of S0,8 and its dual graph shown in thick edges.

The above construction of P ′ from P gives a one-to-one correspondence between
the pants components S0,n − P and the pants components S0,n − P ′. This corre-
spondence describes a homeomorphism f such that f(P ′) = P , as desired.

Next, we show that if P1 and P2 are adjacent vertices in P(S0,n), then after
applying some homeomorphisms on S0,n to P1 and P2, we get two vertices that are
adjacent in Zn.

Given adjacent vertices P1 and P2 in P(S0,n), then there exist curves u1, u2 on
S0,n and a deficiency-1 multicurve Q such that P1 = {u1} ∪ Q and P2 = {u2} ∪ Q.

f(u1)

f(u2)

Fig. 5. Example of an edge {f(P1), f(P2)} and its images after composing with a power of full
twist around the curve f(u1) and a half twist around the same curve.

1750105-8

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

7.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
A

L
A

IL
A

K
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/2
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



December 7, 2017 9:33 WSPC/S0218-2165 134-JKTR 1750105

Exhausting pants graphs of punctured spheres by finite rigid sets

By the first part of the proof, there is f ∈ Mod(S0,n) such that f(P1) is a vertex
in Zn. If f(P2) is also in Zn, then we are done.

Suppose f(P2) is not in Zn. Use Fig. 5 as a reference for the rest of the proof.
We note that f(Q) ⊂ Γn and it has deficiency-1. The nontrivial component (S0,n −
f(Q))0 ∼= S0,4 contains exactly two curves in Γn; one curve is f(u1) and we call the
other curve α. Then i(f(u2), α) = 2n for some n ∈ N. Applying one full twist around
f(u1) in an appropriate direction reduces the intersection number by 4. Observe that
f(P1) is invariant under this full twist. So we can choose a new f (by composing
the old one with some power of full twists) and assume that i(f(u2), α) = 0 or
i(f(u2), α) = 2. If i(f(u2), α) = 0, then f(u2) = α and we are done.

Suppose i(f(u2), α) = 2. We compose f by an appropriate half twist T around
f(u1): here a half-twist in f(u1) is a homeomorphism on S0,n, whose square is
the Dehn twist in f(u1), although we note that it does not necessary to restrict a
homeomorphism of (S0,n − f(Q))0 ∼= S0,4. We choose the half-twist that essentially
“flips over” half of the n-gon, cut along f(u1); see Figs. 5 and 6. Then T ◦f(u2) = α

and the edge {T ◦ f(P1), T ◦ f(P2)} is in Zn as desired.

Let α be a curve on S0,n. We define Pα(S0,n) to be a subgraph of P(S0,n)
induced by vertices corresponding to pants decompositions containing α.

The following lemma is proved in [10] and we use this lemma to prove
Lemma 4.3.

Fig. 6. Examples of half-twist around the thick curves. Two pants decompositions in Z10 and
Z11 are given to help visualize the homeomorphisms. Note that after a half twisting, we get a new
pants decomposition that is still in Z10 or Z11.
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Lemma 4.2. For n ≥ 6, let α be a chain curve on S0,n and let Xα
n−1 = Xn ∩

Pα(S0,n).
Then Xα

n−1
∼= Xn−1. Moreover, this isomorphism is induced by h : S0,n−1 →

(S0,n − α)0 as hα(v) = h(v) ∪ {α} ∈ Xα
n−1.

Lemma 4.3. Xn∩T i
α(Xn) is weakly rigid, for i ∈ {− 1

2 , 1
2} and for all chain curves

α in S0,n.

Proof. Let α be a chain curve and i ∈ {− 1
2 , 1

2}. Suppose f1, f2 : S0,n → S0,m are
π1-injective embeddings such that

fQ1
1 |Xn∩T i

α(Xn) = fQ2
2 |Xn∩T i

α(Xn),

for some deficiency-(n − 3) multicurves Q1 and Q2 on S0,m.
We first prove the case of n = 5. Recall the definition of X5 and the definition

of an alternating cycle. By a direct calculation, we see that X5 ∩ T i
α(X5) consists

of two alternating pentagons which are Z5 = T i
α(T−i

α (Z5)) and T i
α(Z5). They share

an edge together with four triangles as shown in Fig. 3. Since Z5 is an alternating
pentagon and fQ1

1 |Z5 = fQ2
2 |Z5 , [8, Lemma 4.2] implies that Q1 = Q2 and

f1 = f2 or f1 = f2 ◦ e,

where e : S0,5 → S0,5 is the involution exchanging the two pentagons (as we consider
S5 as a double of a pentagon). The map e induces a simplicial map on P(S0,5) that
fixes Z5 and exchanges two triangles on each side of Z5. But f1 and f2 also agree
on the four triangles attached to Z5 so f1 = f2. Hence the case of n = 5 is proved.

Let n ≥ 6 and let α be any chain curve. By Lemma 4.2, a subgraph Xα
n−1 =

Xn ∩ Pα(S0,n) ∼= Xn−1. Since each vertex of Xα
n−1 contains α, T i

α(Xα
n−1) = Xα

n−1.
Hence Xn∩T i

α(Xn) contains Xα
n−1

∼= Xn−1. Consider the restrictions of f1 and f2 on
the subsurface (S0,n−{α})0. Since Xn−1 is rigid, so is Xα

n−1, and the uniqueness part
of Definition 2.1 implies that f1 agrees with f2 on (S0,n−{α})0 and Q1∪{f1(α)} =
Q2 ∪ {f1(α)}.

We can see that Xα
n−1 is a proper subgraph of Xn∩T i

α(Xn). For example, choose
a vertex P in Zn∩Pα(S0,n) ⊂ Xα

n−1. Then change P to P ′ by the elementary move
which replaces α by the other curve α′ in Γn. The vertex T i

α(P ′) is adjacent to P

and it is a vertex in Xn ∩ T i
α(Xn). Hence f1 and f2 agree on T i

α(P ′). Since Q1 and
Q2 are the intersections of all vertices in f1(Xn ∩ T i

α(Xn)) and f2(Xn ∩ T i
α(Xn)),

respectively, and α /∈ T i
α(P ′), it follows f1(α) = f2(α) is not in the intersection.

Therefore, Q1 = Q2 and f1 = f2.

Proof of Theorem 1.1 for S0,n, n ≥ 5. We are ready to prove the main theorem
for n ≥ 5. We will check that all conditions in Proposition 3.2 are satisfied.

Let X = Xn. Lemma 4.1 states that Mod(S0,n) · X = P(S0,n). The set

C = {T±1
2 (α)|α a chain curve}

generates Mod(S0,n), see [4, Corollary 4.15], hence the condition (1) in Proposi-
tion 3.2 is satisfied. By Lemma 4.3, Xn ∩ T i

α(Xn) is weakly rigid, for i ∈ {− 1
2 , 1

2}
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and for all chain curves α in S0,n, hence the condition (2) in Proposition 3.2
is satisfied. Therefore, Proposition 3.2 gives us a sequence of finite rigid set
X = X1 ⊂ X2 ⊂ · · · ⊂ Xm ⊂ · · · such that

⋃
i∈N

Xi = P(S0,n), as desired.

Acknowledgments

The author would like to thank Christopher J. Leininger for his guidance, useful
conversations, and suggestions. In addition, the author would like to thank the
referees for their thorough review and valuable comments.

References

[1] J. Aramayona, Simplicial embeddings between pants graphs, Geom. Dedicata 144(1)
(2010) 115–128.

[2] J. Aramayona and C. J. Leininger, Finite rigid sets in curve complexes, J. Topol.
Anal. 5(2) (2013) 183–203.

[3] J. Aramayona and C. J. Leininger, Exhausting curve complexes by finite rigid sets,
Pacific J. Math. 282(2) (2016) 257–283.

[4] B. Farb and D. Margalit, A Primer on Mapping Class Groups (PMS-49) (Princeton
University Press, 2011).

[5] A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed
orientable surface, Topology 19(3) (1980) 221–237.

[6] N. V. Ivanov, Automorphism of complexes of curves and of teichmüller spaces, Int.
Math. Res. Not. 1997(14) (1997) 651–666.

[7] M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on
punctured tori, Topology Appl. 95(2) (1999) 85–111.

[8] F. Luo, Automorphisms of the complex of curves, Topology 39(2) (2000) 283–298.
[9] D. Margalit, Automorphisms of the pants complex, Duke Math. J. 121(3) (2004)

457–479.
[10] R. Maungchang, Finite rigid subgraphs of the pants graphs of punctured spheres,

preprint (2013), arXiv:1303.3873v2.

1750105-11

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

7.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
A

L
A

IL
A

K
 U

N
IV

E
R

SI
T

Y
 o

n 
12

/2
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.


